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Multifractal analysis of perceptron learning with errors
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Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their
output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By
analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different
storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The
results also allow some conclusions on the spatial distribution of ¢8l1963-651X98)07801-5

PACS numbdps): 87.10+e, 02.50.Cw

[. INTRODUCTION into clusters. In the present paper we use the multifractal

approach to characterize the coupling space structure of the

Artificial neural networks show considerable information output representations in these clusters. This analysis allows

processing capabilities; see, e[d.]. One of the most impor- us to observe various storage and generalization problems

tant tasks isclassificationof data according to an initially within one approach. We include both the case of a student

unknown rule. Considering a set @f=yN input patterns who perfectly learns some incorrect déteg., generalization

& eRN u=1,...p, there are 2 possible binary functions Wwith output nois¢ as well as the case of a student who tries
&—o*=+1. Some of them are linearly separable and carto learn a well-defined task only with a certain error rate
be realized by a simple perceptron (e.g., storage with minimal error above the storage capacity
The outline of the paper is as follows. In Sec. Il we

present the multifractal formalism for neural networks. Sec-
o=sgnJ: §)=sgr( Z ‘]igi)' (1) tion Il contains the general calculations for the internal rep-

resentations of the cell clusters. In Secs. IV and V the most

whereJ e RN is called thecoupling vectorDue to the scaling interesting cases are analyzed in detall, i.e., the storage and

invariance of(1) this vector can be restricted by thpherical ~ the generalization problems with noise. In Sec. VI we briefly
constraintJ-J=N. The direction of] fixes the actual form comment on the spatial distribution of the cells. A summary

of the classification. is given in the final section.

Not all coupling vectors define different functions of the
input patterns. According to their possible output sequences [l. THE MULTIFRACTAL FORMALISM
o={o*u=1,... p} we can group them together into at

Due to the geometrical nature of our problem a multifrac-
tal method is the appropriate one. In this section we intro-
C(o)={J|o*=sgnJI- &)V u}. ) duce the mu_ltifractal formalism as _applied to perceptrons. In
order to clarify the notation we review some results obtained
These cells form a partition of the coupling space whosén [5,6] for spherical couplings without going into the subtle-
structure contains important information on the performancédies of the approach.
of the perceptron in various supervised learning problems. ~We choqse p=yN input patterns 5"6{—1:1}.'“,#
The use of statistical mechanics in the study of the cou=1, . .. .p, with entries randomly drawn from the distribu-
pling space for largeN was initiated by Gardnef2] for  tion p(&)=1/25(&/+1)+1/25(¢f'~1). The hyperplane
random input-output relations. Derridgt al. [3] suggested perpendicular to eacl* cuts the coupling space into two
calculating thecell size distribution which could be done parts. The patterns therefore generate a random partition of
only two years later when Monasson and O’Kd#gintro-  the coupling space into cells defined by E2) and labeled
duced a modification of the standard replica trick in connecby their output sequences. The relative cell sizeP(o)
tion with multifractal techniques. Now there are several ap-=V(0)/Z,V(7) describes the probability of generating the
plications for perceptron$5—8] and multilayer networks outputeo for a given input sequencg* with a coupling vec-
[9,10. tor J chosen at random from a uniform distribution over the
All these calculations consider the case where a uniquelyhole coupling sphere. In the thermodynamic limit they are
determined output is perfectly learned by the student netexpected to scale exponentially with, consequently we
work. However, there is often no need or no possibility ofcharacterize the cell sizes by tieeowding indexa(o) de-
perfectly learning a special classification, or in real applicafined by
tions only noisy output data are available. Introducing an
error rate corresponds to collecting several céfg. (2)] P(o)=2"Na(o), 3

most 2 cells

The storage and generalization properties of the perceptron
*Electronic address: martin.weigt@physik.uni-magdeburg.de  are coded in thelistribution of cell sizeslefined by
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f(a)= lim %IOQZE S(a—a(0)). (4) Pg;g?:%Jg-Jg (10)

N—

are introduced as order parameters. The spherical constraint

In the language of multifractals this quantity is called the . : ) !
restricts the diagonal elements of this matrix to one.

multifractal spectrumTo calculate it within the framework o
of statistical mechanics one uses the formal analogy( aj It is important to note that the output sequen¢eg}
with the microcanonical entropy of the spin systemwith ~ CarTy only one replica index. The typical overlap of tvx;o COtE
HamiltonianNa(o). It can hence be determined from the Pling vectors within one cellsame output sequende.})
corresponding “free energy” will hence in general be different from the typical overlap
between two coupling vectors belonging to different cells

1 1 (different output sequencr;,}). Therefore, we have to in-
m(p)=—lim N|0922 27PN(@ = — |im N|0922 PP(@)  troduce already within theeplica symmetric approximation
N—c v N— v ) two different overlap values:
. . . . 1 if (aa)=(b,B)
via Legendre transformation with respect to the “inverse ]
temperature”p Pab=y P if a=b, a#p 11
Py if a#h.
f(a)=minfap—7(p)]. (6)
p In accordance with the above discussiBrthen denotes the

] ] ) typical overlapwithin one cell whereas?, denotes the over-
In the multifractal terminologyr(p) is called themass expo-  |ap between different cells

nent o ) ) Plugging this RS ansatz into E(R) one realizes thaP,
To explicitly calculate this quantity for the perceptron we = ajways solves the saddle point equations/grThis has
start with the definition of the cell size an obvious physical interpretation: Due to the symmetry of

0 Eq. (1) and therefore of the crowding index under the trans-
B formation @, o)< (—J,— o), every cell has a “mirror cell”
P(o)= d"’“(‘])gl G(J_NU#J'gﬂ) @) of the same size and shape on the “opposite side” of the
coupling spaceP,=0 simply reflects this symmetry.
using the Heaviside step functidfx). The integral measure  Finally we obtain the mass exponent

1 1 p—1
dJi 7(p)=— — extrp| Slog[ 1+ (p—1)P]— ——log(1—P)
du(d) =] —=8(N-2? 8 P
P
ensures both the spherical constraint for the coupling vectors - 7"092f Dth( \ ﬁt) , (12

as well as the total normalizatian,P(o)=1.
In the thermodynamic limiN— we expect bothrandf ~ where we introduced the abbreviatiot=dt exp(—t%

to become self-averaging, and we can therefore calculate thg)/ 27 for the Gaussian measure aht(x)=[7Dt. The

mass exponentS) by using the replica trick introducing  order parametelP is self-consistently determined by the

identical replicas numberea=1, ... n to perform the av-  gaqdle point equation
erage over the quenched patterns. Moreover, we introduce a
second replica indexx=1, ... p in order to represent the P

pth power of P in Eq. (5). Using an integral representation
for the Heaviside function we arrive at a replicated partition
function given by

B [P P
7=z Ly JDtHp 2 ﬁt)exp{—ﬁtz}
a 2m P .
> [T awep 11 G(QJ;”-?‘) [ o \/ﬁ)
{O_i} a,a m,a,a \/N

This equation can only be solved numerically; the results are

» dr g dx in Fi
@ w w shown in Fig. 1.
< <{§} H d’u(‘]a)fo ﬂa /ZwJ ﬂa = The total number of cells is given by
yz

o - ” a2Nf(@)
AZ‘“--“J&&*‘)}>>. © V= a2 a9

VN
and is therefore exponentially dominated by cells of size
As usual, the averag€ )) over the quenched patterns can ay(y) =argmaxf(«)). Because ofdf/da=p this point is
be performed, and the overlaps reached ap=0. The random choice of any output sequence

1+(p—1)P

X exp{ i > x5

woa,a




57 MULTIFRACTAL ANALYSIS OF PERCEPTRON ... 957

18 : . responds to the noise-free cages 0.5 to outputs which are
$ totally uncorrelated to the original pattesa The realized
outputoe {—1,1"N has an overlap

AN

— ' ohgt=1-25 (16)
YN =1

1.2

with s. The set of all cellsC(o) with this output overlap
forms a cluster. It is the internal structure of the cluster
which we will analyze, i.e., we calculate the internal cell
spectrum of the cluster. The restricted partition function can
be written as

06

///' 1 YN
0.0 06 2 18 Z(s,8)=2, 6 V_NE otst—1+26|PY% o), (17
o n

=1
o

FIG. 1. Multifractal spectruni(«) characterizing the cell struc- Where the relative volume(o) is defined by Eq(7). In the
ture of the coupling space of the spherical perceptron for variou$Pecial case of a randomly drawn sequesitiis quantity is
values of the loading parameter-0.2,0.35,0.5,1.0,2.Grom leftto ~ Closely related to the partition function considered| 2]
right). where a Gibbs measure of the error rate was introduced in-

stead of thes function in Eq.(17). Being self-averaging

will hence lead with probability one to a cell of sizg(y), Z(s ) does not depend agitself, but only on the sizex(s)
and 2 N«o(" is found to be the Gardner volume. From ©Of the central cell. It can therefore be characterized by the
ag(y—2)— we find the storage capacity to hg=2 asin  real numbep with a(s)=ay, df/da(ap)=p, in the global
[2]. For y<2 the problem of storingyN random input- SPectrum. The mass exponent of the cluster is thus given by
output pairs is realizable with probability one. So we have
N=2.7N.*°_(N) and thereforef (ag(y))= 1 in the thermody- S PP(s)log,Z(s, )
namic limit. o s

Although the cells with volumey, are the most frequent 7(q|p. &)= _N“mmﬁ
ones, their joint contribution to the totablumeof the sphere -
is negligible. Since

0.0

> PP(s)

S

(18)
1:2 P(a)=f da2Nf(@)—al (15) This i; in complett_a analogy fco the_ st_andard calqulation of
o 0 canonical expectation values in statistical mechanics. A very

similar method was introduced [d1.3] in order to character-
a saddle point argument reveals that the cells with sizéze metastable states in spheripaspin glasses. In that case
a;() defined bydf/da(a;)=1 dominate the volume. This one system was thermalized in an equilibrium state, whereas
point is given byp=1. Cells of larger size are too rare, those a second one was restricted to have a certain overlap with the
more frequent are too small to compete. Consequently a raifirst one, which is analogous to our output sequercand
domly chosencoupling vectorJ will with probability one o
belong to a cell of sizer;. By the definition(2) of the cells The internal spectrunfi(«|p,d) of the cluster can again
all other couplings of this cell will give the same output for be calculated by a Legendre transformation with respect to
all patterns&“. Therefore 2 N“1(?) is nothing but the volume the “inverse temperatureq, cf. Eq.(6).
of the version space of a teacher perceptron chosen at ran- Before explicitly performing the technical part of the
dom from a uniform probability distribution on the sphere of analysis we want to clarify the question of which problems
possible perceptrons. From ifor equivalently from can be solved within our approach. Clearly, the valugp of
P(p=1,y)] one can determine the generalization error as dixes the original learning task without noise, which corre-
function of the training set sizg, thus reproducing the re- sponds to perfect learning of the output sequesicas al-
sults of[11]. ready discussed in Sec. Ib=0,1 are of particular impor-
tance for storage and generalization problems. Ngw,0
Il INTERNAL CELL STRUCTURE OF CLUSTERS describes the most fre_quent qell within the clustgr. If we take
FOR NOISY OUTPUT DATA any random output string- having overlap * 26 with s, we
will arrive with probability one in a cell of sizea(q
In order to include noisy output data we have to slightly =0|p, ). This point corresponds therefore to a student who
modify this procedure. As before, we consider a randomlyperfectly learns one particular incorrect output sequence. For
drawn set of input pattern&g”; u=1, ... ,yN} as quenched the generalization problerp,=1, it gives the behavior in the
disorder. The global cell distribution consequently equals theresence of output noise.
one in the preceding section. On the other handg=1 characterizes the volume-
Now we take any output sequense{— 1,1}, demand- dominating cells of the cluster; the total crowding index of
ing it to be learned with an error rai&= (0,0.5).6=0 cor-  the cluster is given by
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ag(p,8)=a(q=1|p,8) —f(a(q=1|p,d)|p,s). (19 . N
o Zm,n:J H dPk,’I)\J H an,f
(k,k)<(I,\) (a,a)<(b,B)

It describes the volume of the version space of a lazy student P R

who is satisfied whenever he finds a coupling vector produc- X J J 11 dpaexp[ Inde( )

ing errors with maximal rat®. (k). (2, a) Q
From the spectra for different but fixed 6 we can get

some information on the spatial distribution of the cells— +iyN(1—-26)>D, Fa]

whether there are more large or small cells in the environ-

ment of another large or small cell. This can be read off the

p dependence of the internal cluster spectrum for one value « f“ H dp'fJ' H H drg
of é. 0 (k) ) 277 (@ e
In order to answer all these questions we have to calculate
the mass exponeril8). We need to introduce four replica- Xf ot 2 o Bx B
tions as representation @f) the logarithm of the partition (a.a) 2775k ‘Ta ab”a”b
function:a=1, ... n; (ii) the powerqg in the partition func-
tion: =1, ... gq; (iii) the fraction in the average over all -3 Re 2 PEMEA S g axa
cells:k=1, ... m; and(iv) the powerp in the average over Kima aYkXa 2, k! YiYi 'a’a TahaXa
all p cells: k=1, ... p. The replicated and averaged parti- N
tion function consequently reads
quenty HY splyitiS Faoasl} , 23
/.L
Zmn=<< > 11 du(Kp) H ® _k K gﬂ) whereF, was introduced to fix the overlap sf and o, to
Seoa J Kk J— 1-26.
The determinant can be represented by a Gaussian inte-
H d (3% H ‘T_g‘]a.gﬂ gral having the same exponent as the quadratic part of the
NI second exponent in ER3J). By transforming the integration

variable according to

I

1
><1;[ 5(7—N51~ 0,—1+26

kayk"_ 2 TRy (24
The coupling vectorK; are elements of the cells,K7 of _
the central cell of the clusted? lies within the cluster cells. We obtain
Using this, the mass exponent can be determined from the P R
replica trick _ _
In de R Q =In defP+In def{Q—A) (25
1 H a,pb__ K,a - K, y
~(qlp,8)=— lim im 9,2, . @1  With AZF=3 | RS (PTHEMRYY. The same transfor-
N NINZ2 7 ’ mation can be made in the second exponent in(Eg). We
analyze the resulting expression using the replica symmetric
: . ansatz:
The calculation oiZ, , widely follows standard routes and
uses the order parameters 1 (k,k)=(I,\)
Pot={ P k=I, k#\
1 ,
P;;,*=NK;.KM VkI=1,...m k\=1,...p, 0 k#l,
1 (a,a)=(b,p)
1 Qa'BZ Ql a=b a?ﬁﬁ
*f=—732.3f, Vab=1,...n; a,f=1,...4, ab ’
Qa,b N a Vb :8 q QO a#b,
R k=1
K,a 1 K qa Rﬁ’a:
Rk,’a:NKk"]a 2 0 k#1,
iF,=F

for the overlaps of coupling vectors fromcells and fromg

cells of the cluster. The diagonal elements of the mati@@es P describes the typical overlap within opecell of the glo-
andP are restricted to one by the spherical constraint. Thidal spectrum, therefore fulfilling the saddle-point equation
leads after standard manipulations to (13) from Sec. I1.Q; gives the overlap of two arbitrary cou-
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plings from the samgq cell inside the clusteQg the overlap the cluster cells with the central cell, whereas the overlap
between two of these cells. Due to the fixed overlap of theof a cell from the cluster with a randomly chosprcell is
cluster output with the output of the central cell, the mirroragain zero for symmetry reasons.

symmetry (,0)—(—J,— o) is explicitly broken. We there- Finally we get the replica symmetric mass exponent by
fore expectQ to be different from zeroR is the overlap of taking theO(n) terms form=0,

pR
1 q-1 1 a CI-(p-1p
T(Q|pa5)__EeXtrQ0’1,R,F Tln(l_Ql)+ 5'”[1+(q_1)Q1_QQ0]+51+(q_1)Ql_qQo+7(1_25)F

fw dp exp{—i(p_\/ﬁ)z—ié ]
0\27(1-P) 2 1-P P

foref Vi

p
fDulnf Dw(e"HY +e FHY)

fdc dc ‘°6JD
_— t
2 ©

+y

(27
with
I pR® R
H.=H| + Qi Qo \/QO_ 1-(p- 1P T+(p-DP° (28)
T V1-Q,

P is given by Eq.(13) for p. Because of the integrals over complex-valued functions the general case is hard to handle
numerically, and we concentrate on the most important case3,1, i.e., the storage and generalization problems.
IV. STORAGE WITH ERRORS

In this section we focus on the storage problem with noisy output data, i.e., the case of a central qe# iitmserting
this into Eqg.(27) we can eliminate the integrals over complex-valued functions and find

9 Qo
21+(9—-1)Q;—0aQ

q-1 1
T|n(1—Ql)+ Eln[1+(q—1)Q1—qQo]+

1
7(q|0,8)=— FextrQM,F

+y(1-28)F
2 o

+yf Dulnf Dw(efH9 +e FHY) (29
whereH .. simplifies to
[ V1= Qow+VQou
H.=H| = . (30)
V1=-Qq

The dependences dd and P vanish, leading to only three saddle point equations for the order pararket&s, andQq:

f Dw(e"HY —e FHT)

0=1—25—j Du
wa(eFH‘lee‘FH‘i)

)p{_(\/Ql—QoW+\/Q_oU)2 ;

Dw(eFHY 1—e FHI Hex
J ( + 2(1-Qy)

0= Qo B Y fDu
[1+(9-1)Q1—qQe)* 27(1-Qy) fDW(eFH‘l—Fe*FHi)

(31
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I (VQ1— Qow+ \Qou)?
Frgq—2 Figq—-2 _
. .- Q4 . Qy(1-Qy) _lj DUJ’ Dw(eFHI “+e FHY )exp{ 1-0;
1+(9-1)Q:—9Qo [1+(q—1)Q,;—qQ,)*> 27

f Dw(efHY +e FHY)

Before solving these equations numerically, we discuss We consider now the last integral in EQ9) in the case
some intuitively clear and also analytically tractable limiting of negativeq. Because ofH(w)ox<exp(—w%2)/\27w for
cases. Fop= 0.5 half the output bits are flipped and there islarge w we get an asymptotic exponential part of the last
no remaining correlation between the original output sedintegrand which is proportional to e&pAw?/2+O(w))
quences and the sequence to be learned. Up to terms with
irrelevant in the limit of largeN we obtain at mostg(},‘yN)
=2" possible cells, hence the spectrum equals the global

one described in Sec. Il. From the first saddle-point equation

we calculateF=0, from the second follow®,=0. The
third equation together with Eq29) confirms our expecta-
tion.

For 6=0 both sequencesand o coincide up to a non-

extensive fraction of bits. The cluster thus shrinks towards its
central cell, which has the Gardner volume. The cluster spec-

trum shrinks to a single point at, (as defined in Sec.)lland
f=0. In the saddle point equatiori81) we find this result
for F— —« andQy=Q;=P(p=0) fulfilling Eq. (13) with
p=0.

Forq=0 we obtain for every fixed the storage problem
with an output sequence produced by flippi#igN bits ran-

domly chosen from a randomly drawn sequence of length

yN. The resulting output sequeneeis consequently also a

random sequence of independent and unbiased bits. The

oo 1HE-1)Qi-aQe

-0, (32

The integral consequently diverges e 0, i.e., for every
0=<Qo=1 atQ:=(1-9Qp)/(1—q), and the global mini-
mum in Eq.(29) with respect tdQ; is no longer given by the
saddle point equation@1). Due to this, the mass exponent
would be expected to diverge to for everyq<0. On the
other hand, the continuation of the saddle point equations
(31) to <0 gives smooth results for the mass exponent and
the multifractal spectrum. We expect it therefore to describe
the correct regularization of the partition function at least
within the replica symmetric approximation.

V. GENERALIZATION WITH ERRORS

learning problem is obviously equivalent to the standard

Gardner problem. This is confirmed bw(q=0|0,9)
=ag,V 6, whereas the total number of these cells gm
resulting inf(0|0,8) = — y(8log,6—(1— 8)log,(1—8)) in the
thermodynamic limit.

The rest of the spectrum has to be analyzed numerically;
typical set off(a) curves is shown in Fig. 2. The most
interesting point is—besideg=0 as discussed above—
given byg=1. The total volume of the cluster is given by its
crowding indexag(8) = a(q=1|0,8) — f(a(q=1|0,8)). By
calculating the storage capaciy(5) for fixed error rated
from the divergence ok we reproduce the replica symmet-
ric results of[2], which Gardner and Derrida calculated for
the minimal error rate above=2. So at least at that point,

replica symmetry breaking effects should be taken into ac-

count in the ansatz for the cluster overi@p However, due

to the complexity of even the replica symmetric calculation

we refrain from doing this.

We still have to remark that the continuation of the mass

exponent to negativg is somewhat subtle. This can be ex-
pected already by considering the definitidy) of the re-
stricted partition functiorZ (s, 5). Whenever there are empty
cells, Eq. (17 diverges for everyq<O0, leading to7(q

<0l|p, 8) = —= because of the average over all input realiza-

tions in Eq.(18). Without any change of the results for posi-
tive g, we can regularize- by summing only over thoser
having a nonvanishing relative cell voluri€ o), describing
the well-defined multifractal spectrum also fq0 via a
Legendre transformation.

In this section we treat the question of generalizing noisy
output data. As mentioned in Sec. I, this problem corre-
sponds to takingp=1. Also in this case the complex-valued
integrals can be evaluated analytically. The mass exponent is
given by

0.20

f 010

0.05

FIG. 2. Multifractal spectrunf(«) of clusters aroung cells
with p=0 and 1(solid and dashed lines, respectivefgr y=0.2
and$=0.5,0.3,0.2,0.1from top). The diamonds mark the crowding
indices of the central cells; they coincide with the spectra dor
=0.
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7(9|1,8)= L exts —q_lln(l Q1) H.=H . YQ1~Qgw+ VQou (34)
B T T )
1

1
+5In[1+(a—1)Q1~ Qo] Again, the dependence dhvanishes, wherea® remains an

order parameter to be optimized. We obtain four saddle point

L9 Qo—R? (1-25)F equations which determine, Qq, Q;, andR:
21+(9-1)Q1—aqQo
uR FHa 0=1-26 ZJD H %
+2fDuH—InwaeH_ =l—zo— UR| ——=
7 VQo—R ( Qo R?
_l_e—FH(i) (33) JDW(EFHﬁ_e_FHi)
>< 1

F9 4+ a—FHQ
with JDW(e HZ:+e "HY)

_ Qo—R? Y
O_[1+(q_1)Q1_QQo]2 W(l_Ql)fDUH

Qo—R?

~ (VQ1—Qow+ \/Q_oU)ZJ ?
2(1-Qy)

fDW(eFqu—eFH‘il)exp{
X

f Dw(eFHI +e FHY)
(39
(Qo—R?(1-Qy)

0= Q:1—Qo
[1+(9-1)Q:—qQol?

~1+(9-1)Q;—qQp

—Zf DuH
T

~ (VQ1— QoW+ VQow)?
1-Q;

UR f Dw(eFHq2+eFHiz)exp|

VQo—R?

f Dw(eFHY +e FHY)

_ aR
1+(9-1)Q:1—qQ

0

+ 2 f due QuZ/2(Qu—R?)
a

Qou

. <0F FHY + o~ FHY
(QO—R2)3’2|nJ Dw(e"H? +e " "H1).

Several intuitively clear limiting cases can be discussed anaf(q|1,0) is found to be zero. The equivalence of this solution

lytically. As argued in the preceding section, 6+ 0.5 we
recover the full spectrum with order parametedfs=0,
R=0,Qy=0, andQ,=P(q). R is the overlap of the central

to earlier results of11] was already discussed [B,6].
For generals the analysis has to be done numerically. In
Fig. 1 we show a representative set of spectra for several

cell with the cells of the cluster. Its value is found to be zerovalues ofé. For growing error rate not only does the number
for all g indicating that all types of cluster cells are orthogo- of cells in the cluster increase, but also the range of different
nal to the teacher vector; their volumes are dominated by thexistent cell sizes.
part lying on the N—1)-dimensional “equator.” The learn- For g=0 we obtain a student who perfectly learns an
ing of a vector obtained by flipping half of the teacher’s output sequence generated by a teacher, but flipped with rate
outputs is obviously equivalent to the storage problem of &. This corresponds to the case of output noise analyzed in
random output sequence. The student is not able to get arfg1,14). The cell sizes go for & §<0.5 from a4 to g, thus
information about the teacher’s rule. interpolating between the noiseless learning from examples
For 6—0 the cell cluster shrinks towards the central cell,and the storage problem for random input-output relations.
which is the version space of the corresponding noise-fre&his interpretation gives also a sense of the part of the global
generalization problent diverges to—« whereas the other cell spectrum for inverse temperatures between zero and one;
three order parameters coincide asymptoticallg=Q;  at least a proper subset of these can be understood as gener-
=R=P(p=1). The crowding index takes only the valug; alization tasks including noisy output data. Of course, for
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1.0 . — VI. ON THE SPATIAL CELL DISTRIBUTION
T o From the spectrum of the internal representations in a
08 | P cluster we can also get some information on the spatial dis-
— tribution of the cells. If the latter were totally random, we
o / would not expect any dependence of the internal cluster
06 8 spectrum on the central cell, i.e., g In this case, cells of

all possible sizes should be contained in the cluster. From
Fig. 1, where the spectra are plotted fo+ 0,1, we can de-
04r // 7 duce that the distribution has some structure. Reduding

'/ from 0.5 not only decreases the number of cells, but also the
range of different cells. Both very large as well as very small

overlap

02 /. 1
cells are excluded.
In the neighborhood o®=0, the spectrum is concen-
0.0 L ‘ X o~ trated in a small interval around the crowding index of
0.0 5.0 }

the central cell. This means that every cell is surrounded by
cells having almost the same size leading to some kind of

FIG. 3. Overlap®Q,,R,Q, (from top to bottom for the gener-  clustering of cells of nearly equal size. So there appear in the
alization problem with a student making up to 9N (full lines) neighborhood of very large cells no very small cells and vice
and 0.N (dashed lineserrors. versa. Of course, due to the symmetry of the probability
distributions for the input patterns, these ‘“clusters” of
nearly equally sized cells are isotropically located in cou-
pling space.

Y

>0 this task is not learnable for large loading ratyosT his
observation leads directly to a storage capagit{/5) going
monotonously from y.(0)=c« to the Gardner value
v:.(6=0)=2. For everyd the overlapR between teacher
and student is a monotonously increasing function of the

loading ratio. Its maximal value is reached Bfn.{9) In the present paper we have analyzed the internal struc-
=R(yc(9)), which remains strictly smaller than 1 for every yre of cell clusters having a given output overlap with a
6#0. ) certain central cell. The calculation of the internal multifrac-

Another problem can be analyzed in the spectrung at ta| spectrum of such clusters allowed us to discuss various
=1. The total volume of the cell cluster surrounding a cell Ofstorage and generalization problems of noisy output data
sizea; is given by its total crowding index, which can again within one single unified approach. The analysis included
be calculated fromu(8)=a(q=1[1,6)—f(a(q=1[1,8)).  poth the case of a lazy student that is satisfied whenever he
This learning task corresponds to a lazy student being satigchieves some maximal error rate, as well as the case of an
fied with any output having at mostyN errors compared absent-minded teacher offering incorrect data to his student.
with the sequence of examples presented by the teacher, ¢f the global cell spectrum of the whole coupling space it
[11]. The student can achieve this for every valueyofan  was not possible to give an interpretation to cells of crowd-
upper threshold for the loading ratio does not exist. As illus4ng indices in between the Gardner valag and the gener-
trated by the full lines in Fig. 3, in the case of a fixed error lization valuea,. As a result of the present approach, we
rate 6>0 the overlapR between teacher and student doesare able to understand at least a proper subset of these cells
not go to 1, and the generalization error (1/m)arccoR  as related to generalization tasks with output noise. Addition-
does not tend to zero for increasing loading ratioThe cell  ally we have shown that every cell is surrounded by cells
volume of every special output realization shrinks to zerohaving nearly the same size. The range of realized sizes is
Q;—1, but this is compensated by a cell number exponenincreasing with decreasing overlap of the output sequences
tially growing with yN. Thus, the resulting total cluster vol- |abeling the cells.
ume does not vanisiQ,<1. If we fix instead the total num- We are aware of the fact that the multifractal approach is
ber of errors, the number of possible representations does npfagued by the existence of replica symmetry breaking, but
depend ony either. The vanishing version space volume ofdue to the technical difficulties of a calculation that includes
every particular output sequence thus results in a vanishingpur different kinds of replicas we restricted our analysis to
total volume, leading to a vanishing generalization error inthe replica symmetric ansatz. The inclusion of replica sym-
the limit of large loadingsy, cf. the dashed lines in Fig. 3. In metry breaking effects would surely change some of the cal-
both cases, the information ga[i4] da/dy goes from culated quantities, but the qualitative picture would probably
values of order Ihalving the cell with every new pattern remain unchanged.
for small y to zero fory—os.

The inclusion of simultaneous noise for teacher and stu- ACKNOWLEDGMENTS
dent requires the introduction of six different replications
resulting in an even more complex structure of the order Many thanks to A. Engel and J. Berg for illuminating
parameter equations. Therefore we refrain from doing it.  discussions and for a careful reading of the manuscript.
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