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Multifractal analysis of perceptron learning with errors

M. Weigt*
Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t Magdeburg, PSF 4120, 39016 Magdeburg, Germany

~Received 16 July 1997!

Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their
output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By
analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different
storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The
results also allow some conclusions on the spatial distribution of cells.@S1063-651X~98!07801-5#

PACS number~s!: 87.10.1e, 02.50.Cw
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I. INTRODUCTION

Artificial neural networks show considerable informatio
processing capabilities; see, e.g.,@1#. One of the most impor-
tant tasks isclassificationof data according to an initially
unknown rule. Considering a set ofp5gN input patterns
jmPRN,m51, . . . ,p, there are 2p possible binary functions
jm°sm561. Some of them are linearly separable and c
be realized by a simple perceptron

s5sgn~J•j!5sgnS (
i

Jij i D , ~1!

whereJPRN is called thecoupling vector. Due to the scaling
invariance of~1! this vector can be restricted by thespherical
constraintJ•J5N. The direction ofJ fixes the actual form
of the classification.

Not all coupling vectors define different functions of thep
input patterns. According to their possible output sequen
s5$smum51, . . . ,p% we can group them together into
most 2p cells

C~s!5$Jusm5sgn~J•jm!;m%. ~2!

These cells form a partition of the coupling space who
structure contains important information on the performa
of the perceptron in various supervised learning problem

The use of statistical mechanics in the study of the c
pling space for largeN was initiated by Gardner@2# for
random input-output relations. Derridaet al. @3# suggested
calculating thecell size distribution, which could be done
only two years later when Monasson and O’Kane@4# intro-
duced a modification of the standard replica trick in conn
tion with multifractal techniques. Now there are several a
plications for perceptrons@5–8# and multilayer networks
@9,10#.

All these calculations consider the case where a uniqu
determined output is perfectly learned by the student n
work. However, there is often no need or no possibility
perfectly learning a special classification, or in real appli
tions only noisy output data are available. Introducing
error rate corresponds to collecting several cells@Eq. ~2!#
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into clusters. In the present paper we use the multifra
approach to characterize the coupling space structure of
output representations in these clusters. This analysis all
us to observe various storage and generalization probl
within one approach. We include both the case of a stud
who perfectly learns some incorrect data~e.g., generalization
with output noise! as well as the case of a student who tri
to learn a well-defined task only with a certain error ra
~e.g., storage with minimal error above the storage capac!.

The outline of the paper is as follows. In Sec. II w
present the multifractal formalism for neural networks. Se
tion III contains the general calculations for the internal re
resentations of the cell clusters. In Secs. IV and V the m
interesting cases are analyzed in detail, i.e., the storage
the generalization problems with noise. In Sec. VI we brie
comment on the spatial distribution of the cells. A summa
is given in the final section.

II. THE MULTIFRACTAL FORMALISM

Due to the geometrical nature of our problem a multifra
tal method is the appropriate one. In this section we int
duce the multifractal formalism as applied to perceptrons
order to clarify the notation we review some results obtain
in @5,6# for spherical couplings without going into the subtl
ties of the approach.

We choose p5gN input patterns jmP$21,1%N,m
51, . . . ,p, with entries randomly drawn from the distribu
tion p(j i

m)51/2d(j i
m11)11/2d(j i

m21). The hyperplane
perpendicular to eachjm cuts the coupling space into tw
parts. The patterns therefore generate a random partitio
the coupling space into cells defined by Eq.~2! and labeled
by their output sequencess. The relative cell sizeP(s)
5V(s)/(tV(t) describes the probability of generating th
outputs for a given input sequencejm with a coupling vec-
tor J chosen at random from a uniform distribution over t
whole coupling sphere. In the thermodynamic limit they a
expected to scale exponentially withN, consequently we
characterize the cell sizes by thecrowding indexa(s) de-
fined by

P~s!522Na~s!. ~3!

The storage and generalization properties of the percep
are coded in thedistribution of cell sizesdefined by
955 © 1998 The American Physical Society
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956 57M. WEIGT
f ~a!5 lim
N→`

1

N
log2(

s
d„a2a~s!…. ~4!

In the language of multifractals this quantity is called t
multifractal spectrum. To calculate it within the framework
of statistical mechanics one uses the formal analogy off (a)
with the microcanonical entropy of the spin systems with
Hamiltonian Na(s). It can hence be determined from th
corresponding ‘‘free energy’’

t~p!52 lim
N→`

1

N
log2(

s
22pNa~s!52 lim

N→`

1

N
log2(

s
Pp~s!

~5!

via Legendre transformation with respect to the ‘‘inver
temperature’’p

f ~a!5min
p

@ap2t~p!#. ~6!

In the multifractal terminologyt(p) is called themass expo-
nent.

To explicitly calculate this quantity for the perceptron w
start with the definition of the cell size

P~s!5E dm~J! )
m51

p

uS 1

AN
smJ•jmD ~7!

using the Heaviside step functionu(x). The integral measure

dm~J!5)
i

dJi

A2pe
d~N2J2! ~8!

ensures both the spherical constraint for the coupling vec
as well as the total normalization(sP(s)51.

In the thermodynamic limitN→` we expect botht and f
to become self-averaging, and we can therefore calculate
mass exponent~5! by using the replica trick introducingn
identical replicas numbereda51, . . . ,n to perform the av-
erage over the quenched patterns. Moreover, we introdu
second replica indexa51, . . . ,p in order to represent the
pth power ofP in Eq. ~5!. Using an integral representatio
for the Heaviside function we arrive at a replicated partiti
function given by

Zn5^^Zn&&

5K K (
$sm

a %
E )

a,a
dm~Ja

a! )
m,a,a

uS sm
a

AN
Ja

a
•jmD L L

5K K (
$sm

a %
E )

a,a
dm~Ja

a!E
0

`

)
m,a,a

dlm
a,a

A2p
E )

m,a,a

dxm
a,a

A2p

3expH i (
m,a,a

xm
a,aS lm

a,a2
sm

a

AN
Ja

a
•jmD J L L . ~9!

As usual, the averagê̂ && over the quenched patterns ca
be performed, and the overlaps
rs

he

a

Pa,b
a,b5

1

N
Ja

a
•Jb

b ~10!

are introduced as order parameters. The spherical const
restricts the diagonal elements of this matrix to one.

It is important to note that the output sequences$sm
a %

carry only one replica index. The typical overlap of two co
pling vectors within one cell~same output sequence$sm

a %)
will hence in general be different from the typical overla
between two coupling vectors belonging to different ce
~different output sequence$sm

a %). Therefore, we have to in
troduce already within thereplica symmetric approximation
two different overlap values:

Pa,b
a,b5H 1 if ~a,a!5~b,b!

P if a5b, aÞb

P0 if aÞb.

~11!

In accordance with the above discussion,P then denotes the
typical overlapwithin one cell, whereasP0 denotes the over-
lap between different cells.

Plugging this RS ansatz into Eq.~9! one realizes thatP0
50 always solves the saddle point equations forP0. This has
an obvious physical interpretation: Due to the symmetry
Eq. ~1! and therefore of the crowding index under the tran
formation (J,s)↔(2J,2s), every cell has a ‘‘mirror cell’’
of the same size and shape on the ‘‘opposite side’’ of
coupling space.P050 simply reflects this symmetry.

Finally we obtain the mass exponent

t~p!52
1

log2
extrPF1

2
log@11~p21!P#2

p21

2
log~12P!

2g log2E DtHpSA P

12P
t D G , ~12!

where we introduced the abbreviationsDt5dt exp(2t2/
2)/A2p for the Gaussian measure andH(x)5*x

`Dt. The
order parameterP is self-consistently determined by th
saddle point equation

P

11~p21!P

5
g

2p

E DtHp22SA P

12P
t D expH 2

P

12P
t2J

E DtHpSA P

12P
t D . ~13!

This equation can only be solved numerically; the results
shown in Fig. 1.

The total number of cells is given by

N5E
0

`

da2N f~a! ~14!

and is therefore exponentially dominated by cells of s
a0(g)5argmax„f (a)…. Because ofd f /da5p this point is
reached atp50. The random choice of any output sequen
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57 957MULTIFRACTAL ANALYSIS OF PERCEPTRON . . .
will hence lead with probability one to a cell of sizea0(g),
and 22Na0(g) is found to be the Gardner volume. Fro
a0(g→2)→` we find the storage capacity to begc52 as in
@2#. For g,2 the problem of storinggN random input-
output pairs is realizable with probability one. So we ha
N52gN2o(N) and thereforef „a0(g)…5g in the thermody-
namic limit.

Although the cells with volumea0 are the most frequen
ones, their joint contribution to the totalvolumeof the sphere
is negligible. Since

15(
s

P~s!5E
0

`

da2N@ f ~a!2a#, ~15!

a saddle point argument reveals that the cells with s
a1(g) defined byd f /da(a1)51 dominate the volume. This
point is given byp51. Cells of larger size are too rare, tho
more frequent are too small to compete. Consequently a
domly chosencoupling vectorJ will with probability one
belong to a cell of sizea1. By the definition~2! of the cells
all other couplings of this cell will give the same output f
all patternsjm. Therefore 22Na1(g) is nothing but the volume
of the version space of a teacher perceptron chosen at
dom from a uniform probability distribution on the sphere
possible perceptrons. From it@or equivalently from
P(p51,g)] one can determine the generalization error a
function of the training set sizeg, thus reproducing the re
sults of @11#.

III. INTERNAL CELL STRUCTURE OF CLUSTERS
FOR NOISY OUTPUT DATA

In order to include noisy output data we have to sligh
modify this procedure. As before, we consider a random
drawn set of input patterns$jm;m51, . . . ,gN% as quenched
disorder. The global cell distribution consequently equals
one in the preceding section.

Now we take any output sequencesP$21,1%gN, demand-
ing it to be learned with an error ratedP(0,0.5).d50 cor-

FIG. 1. Multifractal spectrumf (a) characterizing the cell struc
ture of the coupling space of the spherical perceptron for vari
values of the loading parameterg50.2,0.35,0.5,1.0,2.0~from left to
right!.
e

e

n-

n-
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e

responds to the noise-free case,d50.5 to outputs which are
totally uncorrelated to the original patterns. The realized
outputsP$21,1%gN has an overlap

1

gN (
m51

gN

smsm5122d ~16!

with s. The set of all cellsC(s) with this output overlap
forms a cluster. It is the internal structure of the clus
which we will analyze, i.e., we calculate the internal c
spectrum of the cluster. The restricted partition function c
be written as

Z~s,d!5(
s

dS 1

gN (
m51

gN

smsm2112d D Pq~s!, ~17!

where the relative volumeP(s) is defined by Eq.~7!. In the
special case of a randomly drawn sequences this quantity is
closely related to the partition function considered in@12#
where a Gibbs measure of the error rate was introduced
stead of thed function in Eq. ~17!. Being self-averaging
Z(s,d) does not depend ons itself, but only on the sizea(s)
of the central cell. It can therefore be characterized by
real numberp with a(s)5ap , d f /da(ap)5p, in the global
spectrum. The mass exponent of the cluster is thus given

t~qup,d!52 lim
N→`

1

N KK (
s

Pp~s!log2Z~s,d!

(
s

Pp~s!
LL .

~18!

This is in complete analogy to the standard calculation
canonical expectation values in statistical mechanics. A v
similar method was introduced in@13# in order to character-
ize metastable states in sphericalp-spin glasses. In that cas
one system was thermalized in an equilibrium state, wher
a second one was restricted to have a certain overlap with
first one, which is analogous to our output sequencess and
s.

The internal spectrumf (aup,d) of the cluster can again
be calculated by a Legendre transformation with respec
the ‘‘inverse temperature’’q, cf. Eq. ~6!.

Before explicitly performing the technical part of th
analysis we want to clarify the question of which problem
can be solved within our approach. Clearly, the value op
fixes the original learning task without noise, which corr
sponds to perfect learning of the output sequences. As al-
ready discussed in Sec. II,p50,1 are of particular impor-
tance for storage and generalization problems. Now,q50
describes the most frequent cell within the cluster. If we ta
any random output strings having overlap 122d with s, we
will arrive with probability one in a cell of sizea(q
50up,d). This point corresponds therefore to a student w
perfectly learns one particular incorrect output sequence.
the generalization problem,p51, it gives the behavior in the
presence of output noise.

On the other hand,q51 characterizes the volume
dominating cells of the cluster; the total crowding index
the cluster is given by

s
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958 57M. WEIGT
acl~p,d!5a~q51up,d!2 f „a~q51up,d!up,d…. ~19!

It describes the volume of the version space of a lazy stud
who is satisfied whenever he finds a coupling vector prod
ing errors with maximal rated.

From the spectra for differentp but fixed d we can get
some information on the spatial distribution of the cells
whether there are more large or small cells in the envir
ment of another large or small cell. This can be read off
p dependence of the internal cluster spectrum for one va
of d.

In order to answer all these questions we have to calcu
the mass exponent~18!. We need to introduce four replica
tions as representation of~i! the logarithm of the partition
function: a51, . . . ,n; ~ii ! the powerq in the partition func-
tion: a51, . . . ,q; ~iii ! the fraction in the average over allp
cells:k51, . . . ,m; and~iv! the powerp in the average ove
all p cells: k51, . . . ,p. The replicated and averaged par
tion function consequently reads

Zm,n5K K (
sk ,sa

E )
k,k

dm~K k
k! )

m,k,k
QS sk

m

AN
K k

k
•jmD

3E )
a,a

dm~Ja
a! )

m,a,a
QS sa

m

AN
Ja

a
•jmD

3)
a

dS 1

gN
s1•sa2112d D L L . ~20!

The coupling vectorsK k
k are elements of thep cells, K1

k of
the central cell of the cluster.Ja

a lies within the cluster cells.
Using this, the mass exponent can be determined from
replica trick

t~qup,d!52 lim
N→`

1

Nln2
lim

m,n→0
]nZm,n . ~21!

The calculation ofZm,n widely follows standard routes an
uses the order parameters

Pk,l
k,l5

1

N
K k

k
•K l

l , ;k,l 51, . . . ,m; k,l51, . . . ,p,

Qa,b
a,b5

1

N
Ja

a
•Jb

b , ;a,b51, . . . ,n; a,b51, . . . ,q,

~22!

Rk,a
k,a5

1

N
K k

k
•Ja

a

for the overlaps of coupling vectors fromp cells and fromq
cells of the cluster. The diagonal elements of the matriceQ
andP are restricted to one by the spherical constraint. T
leads after standard manipulations to
nt
c-

-
e
e

te

he

is

Zm,n5E )
~k,k!,~ l ,l!

dPk,l
k,lE )

~a,a!,~b,b!
dQa,b

a,b

3E )
~k,k!,~a,a!

dRk,a
k,aE )

a
dFaexpH N

2
lndetS P R

Rt QD
1 igN~122d!(

a
FaJ

3F E
0

`

)
~k,k!

drk
kE )

~k,k!

dyk
k

2p E
0

`

)
~a,a!

dla
a

3E )
~a,a!

dxa
a

2p (
sk ,sa

expH 2
1

2 (
a,a,b,b

Qa,b
a,bxa

axb
b

2 (
k,k,a,a

Rk,a
k,ayk

kxa
a2

1

2 (
k,k,l ,l

Pk,l
k,lyk

kyl
l1 i(

a,a
sala

axa
a

1 i(
k,k

skrk
kyk

k1 i(
a

Fasas1J GgN

, ~23!

whereFa was introduced to fix the overlap ofs1 andsa to
122d.

The determinant can be represented by a Gaussian
gral having the same exponent as the quadratic part of
second exponent in Eq.~23!. By transforming the integration
variable according to

yk
k°yk

k1 (
l ,l,a,a

~P21!k,l
k,lRl ,a

l,axa
a ~24!

we obtain

ln detS P R

Rt QD 5 ln detP1 ln det~Q2A! ~25!

with Aa,b
a,b5(k,k,l ,lRk,a

k,a (P21)k,l
k,lRl ,b

l,b . The same transfor-
mation can be made in the second exponent in Eq.~23!. We
analyze the resulting expression using the replica symme
ansatz:

Pk,l
k,l5H 1 ~k,k!5~ l ,l!

P k5 l , kÞl

0 kÞ l ,

Qa,b
a,b5H 1 ~a,a!5~b,b!

Q1 a5b, aÞb

Q0 aÞb,
~26!

Rk,a
k,a5H R k51

0 kÞ1,

iF a5F.

P describes the typical overlap within onep cell of the glo-
bal spectrum, therefore fulfilling the saddle-point equati
~13! from Sec. II.Q1 gives the overlap of two arbitrary cou
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plings from the sameq cell inside the cluster,Q0 the overlap
between two of these cells. Due to the fixed overlap of
cluster output with the output of the central cell, the mirr
symmetry (J,s)°(2J,2s) is explicitly broken. We there-
fore expectQ0 to be different from zero.R is the overlap of
e
r

the cluster cells with the centralp cell, whereas the overlap
of a cell from the cluster with a randomly chosenp cell is
again zero for symmetry reasons.

Finally we get the replica symmetric mass exponent
taking theO(n) terms form50,
handle
t~qup,d!52
1

ln2
extrQ0,1,R,FF q21

2
ln~12Q1!1

1

2
ln@11~q21!Q12qQ0#1

q

2

Q02
pR2

12~p21!P

11~q21!Q12qQ0
1g~122d!F

1g

E dc dĉ

2p
eicĉE DtF E

0

` dr

A2p~12P!
expH 2

1

2

~r2APt!2

12P
2 i ĉrJ G p

E DulnE Dw~eFH2
q 1e2FH1

q !

E DtHpSA P

12P
t D G

~27!

with

H65HS 6

AQ12Q0w1AQ02
pR2

12~p21!P
u1

R

11~p21!P
c

A12Q1

D . ~28!

P is given by Eq.~13! for p. Because of the integrals over complex-valued functions the general case is hard to
numerically, and we concentrate on the most important casesp50,1, i.e., the storage and generalization problems.

IV. STORAGE WITH ERRORS

In this section we focus on the storage problem with noisy output data, i.e., the case of a central cell withp50. Inserting
this into Eq.~27! we can eliminate the integrals over complex-valued functions and find

t~qu0,d!52
1

ln2
extrQ0,1,FFq21

2
ln~12Q1!1

1

2
ln@11~q21!Q12qQ0#1

q

2

Q0

11~q21!Q12qQ0
1g~122d!F

1gE DulnE Dw~eFH2
q 1e2FH1

q !G ~29!

whereH6 simplifies to

H65HS 6
AQ12Q0w1AQ0u

A12Q1
D . ~30!

The dependences onR andP vanish, leading to only three saddle point equations for the order parametersF, Q0 , andQ1 :

05122d2E Du
E Dw~eFH2

q 2e2FH1
q !

E Dw~eFH2
q 1e2FH1

q !

,

05
Q0

@11~q21!Q12qQ0#2
2

g

2p~12Q1!
E DuF E Dw~eFH2

q212e2FH1
q21!expH 2

~AQ12Q0w1AQ0u!2

2~12Q1! J
E Dw~eFH2

q 1e2FH1
q !

G 2

,

~31!
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05
Q12Q0

11~q21!Q12qQ0
1

Q0~12Q1!

@11~q21!Q12qQ0#2
2

g

2pE Du
E Dw~eFH2

q221e2FH1
q22!expH 2

~AQ12Q0w1AQ0u!2

12Q1
J

E Dw~eFH2
q 1e2FH1

q !

.
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Before solving these equations numerically, we disc
some intuitively clear and also analytically tractable limitin
cases. Ford50.5 half the output bits are flipped and there
no remaining correlation between the original output
quences and the sequences to be learned. Up to term
irrelevant in the limit of largeN we obtain at most (0.5gN

gN )
.2gN possible cells, hence the spectrum equals the glo
one described in Sec. II. From the first saddle-point equa
we calculateF50, from the second followsQ050. The
third equation together with Eq.~29! confirms our expecta
tion.

For d50 both sequencess and s coincide up to a non-
extensive fraction of bits. The cluster thus shrinks towards
central cell, which has the Gardner volume. The cluster sp
trum shrinks to a single point ata0 ~as defined in Sec. II! and
f 50. In the saddle point equations~31! we find this result
for F→2` andQ05Q15P(p50) fulfilling Eq. ~13! with
p50.

For q50 we obtain for every fixedd the storage problem
with an output sequence produced by flippingdgN bits ran-
domly chosen from a randomly drawn sequence of len
gN. The resulting output sequences is consequently also a
random sequence of independent and unbiased bits.
learning problem is obviously equivalent to the stand
Gardner problem. This is confirmed bya(q50u0,d)
5a0 ,;d, whereas the total number of these cells is (dgN

gN )
resulting in f (0u0,d)52g„d log2d2(12d)log2(12d)… in the
thermodynamic limit.

The rest of the spectrum has to be analyzed numerical
typical set of f (a) curves is shown in Fig. 2. The mos
interesting point is—besidesq50 as discussed above—
given byq51. The total volume of the cluster is given by i
crowding indexacl(d)5a(q51u0,d)2 f „a(q51u0,d)…. By
calculating the storage capacitygc(d) for fixed error rated
from the divergence ofacl we reproduce the replica symme
ric results of@2#, which Gardner and Derrida calculated f
the minimal error rate aboveg52. So at least at that poin
replica symmetry breaking effects should be taken into
count in the ansatz for the cluster overlapQ. However, due
to the complexity of even the replica symmetric calculati
we refrain from doing this.

We still have to remark that the continuation of the ma
exponent to negativeq is somewhat subtle. This can be e
pected already by considering the definition~17! of the re-
stricted partition functionZ(s,d). Whenever there are empt
cells, Eq. ~17! diverges for everyq,0, leading to t(q
,0up,d)52` because of the average over all input realiz
tions in Eq.~18!. Without any change of the results for pos
tive q, we can regularizet by summing only over thoses
having a nonvanishing relative cell volumeP(s), describing
the well-defined multifractal spectrum also forq,0 via a
Legendre transformation.
s

-

al
n

ts
c-

h

he
d

a

-

s

-

We consider now the last integral in Eq.~29! in the case
of negativeq. Because ofH(w)}exp(2w2/2)/A2pw for
large w we get an asymptotic exponential part of the la
integrand which is proportional to exp„2Dw2/21O(w)…
with

D5
11~q21!Q12qQ0

12Q1
. ~32!

The integral consequently diverges forD>0, i.e., for every
0<Q0<1 at Q15(12qQ0)/(12q), and the global mini-
mum in Eq.~29! with respect toQ1 is no longer given by the
saddle point equations~31!. Due to this, the mass expone
would be expected to diverge to2` for everyq,0. On the
other hand, the continuation of the saddle point equati
~31! to q,0 gives smooth results for the mass exponent a
the multifractal spectrum. We expect it therefore to descr
the correct regularization of the partition function at lea
within the replica symmetric approximation.

V. GENERALIZATION WITH ERRORS

In this section we treat the question of generalizing no
output data. As mentioned in Sec. II, this problem cor
sponds to takingp51. Also in this case the complex-value
integrals can be evaluated analytically. The mass expone
given by

FIG. 2. Multifractal spectrumf (a) of clusters aroundp cells
with p50 and 1~solid and dashed lines, respectively! for g50.2
andd50.5,0.3,0.2,0.1~from top!. The diamonds mark the crowdin
indices of the central cells; they coincide with the spectra ford
50.
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Again, the dependence onP vanishes, whereasR remains an
order parameter to be optimized. We obtain four saddle p
equations which determineF, Q0 , Q1 , andR:
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~AQ12Q0w1AQ0u!2

2~12Q1! J
E Dw~eFH2

q 1e2FH1
q !

G 2

,

~35!

05
Q12Q0

11~q21!Q12qQ0
1

~Q02R2!~12Q1!

@11~q21!Q12qQ0#2

2
g

pE DuHS uR

AQ02R2D E Dw~eFH2
q221e2FH1

q22!expH 2
~AQ12Q0w1AQ0u!2

12Q1
J

E Dw~eFH2
q 1e2FH1

q !

,

05
qR

11~q21!Q12qQ0
1

g

pE due2 Q0u2/2~Q02R2!
Q0u

~Q02R2!3/2
lnE Dw~eFH2

q 1e2FH1
q !.
ion

In
eral
er
ent

an
rate
d in

les
ns.
bal
one;
ener-
for
Several intuitively clear limiting cases can be discussed a
lytically. As argued in the preceding section, ford50.5 we
recover the full spectrum with order parametersF50,
R50, Q050, andQ15P(q). R is the overlap of the centra
cell with the cells of the cluster. Its value is found to be ze
for all q indicating that all types of cluster cells are orthog
nal to the teacher vector; their volumes are dominated by
part lying on the (N21)-dimensional ‘‘equator.’’ The learn
ing of a vector obtained by flipping half of the teache
outputs is obviously equivalent to the storage problem o
random output sequence. The student is not able to get
information about the teacher’s rule.

For d→0 the cell cluster shrinks towards the central ce
which is the version space of the corresponding noise-
generalization problem.F diverges to2` whereas the othe
three order parameters coincide asymptotically,Q05Q1
5R5P(p51). The crowding index takes only the valuea1;
a-

e

a
ny

,
e

f (qu1,0) is found to be zero. The equivalence of this solut
to earlier results of@11# was already discussed in@5,6#.

For generald the analysis has to be done numerically.
Fig. 1 we show a representative set of spectra for sev
values ofd. For growing error rate not only does the numb
of cells in the cluster increase, but also the range of differ
existent cell sizes.

For q50 we obtain a student who perfectly learns
output sequence generated by a teacher, but flipped with
d. This corresponds to the case of output noise analyze
@11,14#. The cell sizes go for 0,d,0.5 froma1 to a0, thus
interpolating between the noiseless learning from examp
and the storage problem for random input-output relatio
This interpretation gives also a sense of the part of the glo
cell spectrum for inverse temperatures between zero and
at least a proper subset of these can be understood as g
alization tasks including noisy output data. Of course,
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d.0 this task is not learnable for large loading ratiosg. This
observation leads directly to a storage capacitygc(d) going
monotonously from gc(0)5` to the Gardner value
gc(d50)52. For everyd the overlapR between teache
and student is a monotonously increasing function of
loading ratio. Its maximal value is reached atRmax(d)
5R„gc(d)…, which remains strictly smaller than 1 for eve
dÞ0.

Another problem can be analyzed in the spectrum aq
51. The total volume of the cell cluster surrounding a cell
sizea1 is given by its total crowding index, which can aga
be calculated fromacl(d)5a(q51u1,d)2 f „a(q51u1,d)….
This learning task corresponds to a lazy student being s
fied with any output having at mostdgN errors compared
with the sequence of examples presented by the teache
@11#. The student can achieve this for every value ofg; an
upper threshold for the loading ratio does not exist. As illu
trated by the full lines in Fig. 3, in the case of a fixed err
rate d.0 the overlapR between teacher and student do
not go to 1, and the generalization error«5(1/p)arccosR
does not tend to zero for increasing loading ratiog. The cell
volume of every special output realization shrinks to ze
Q1→1, but this is compensated by a cell number expon
tially growing with gN. Thus, the resulting total cluster vo
ume does not vanish,Q0,1. If we fix instead the total num
ber of errors, the number of possible representations doe
depend ong either. The vanishing version space volume
every particular output sequence thus results in a vanis
total volume, leading to a vanishing generalization error
the limit of large loadingsg, cf. the dashed lines in Fig. 3. I
both cases, the information gain@14# ]acl /]g goes from
values of order 1~halving the cell with every new pattern!
for small g to zero forg→`.

The inclusion of simultaneous noise for teacher and s
dent requires the introduction of six different replicatio
resulting in an even more complex structure of the or
parameter equations. Therefore we refrain from doing it.

FIG. 3. OverlapsQ1 ,R,Q0 ~from top to bottom! for the gener-
alization problem with a student making up to 0.1gN ~full lines!
and 0.1N ~dashed lines! errors.
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VI. ON THE SPATIAL CELL DISTRIBUTION

From the spectrum of the internal representations in
cluster we can also get some information on the spatial
tribution of the cells. If the latter were totally random, w
would not expect any dependence of the internal clus
spectrum on the central cell, i.e., onp. In this case, cells of
all possible sizes should be contained in the cluster. Fr
Fig. 1, where the spectra are plotted forp50,1, we can de-
duce that the distribution has some structure. Reducind
from 0.5 not only decreases the number of cells, but also
range of different cells. Both very large as well as very sm
cells are excluded.

In the neighborhood ofd50, the spectrum is concen
trated in a small interval around the crowding indexap of
the central cell. This means that every cell is surrounded
cells having almost the same size leading to some kind
clustering of cells of nearly equal size. So there appear in
neighborhood of very large cells no very small cells and v
versa. Of course, due to the symmetry of the probabi
distributions for the input patterns, these ‘‘clusters’’
nearly equally sized cells are isotropically located in co
pling space.

VII. SUMMARY

In the present paper we have analyzed the internal st
ture of cell clusters having a given output overlap with
certain central cell. The calculation of the internal multifra
tal spectrum of such clusters allowed us to discuss vari
storage and generalization problems of noisy output d
within one single unified approach. The analysis includ
both the case of a lazy student that is satisfied wheneve
achieves some maximal error rate, as well as the case o
absent-minded teacher offering incorrect data to his stud
In the global cell spectrum of the whole coupling space
was not possible to give an interpretation to cells of crow
ing indices in between the Gardner valuea0 and the gener-
alization valuea1. As a result of the present approach, w
are able to understand at least a proper subset of these
as related to generalization tasks with output noise. Additi
ally we have shown that every cell is surrounded by ce
having nearly the same size. The range of realized size
increasing with decreasing overlap of the output sequen
labeling the cells.

We are aware of the fact that the multifractal approach
plagued by the existence of replica symmetry breaking,
due to the technical difficulties of a calculation that includ
four different kinds of replicas we restricted our analysis
the replica symmetric ansatz. The inclusion of replica sy
metry breaking effects would surely change some of the
culated quantities, but the qualitative picture would proba
remain unchanged.
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